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Abstract Cellular signaling is largely controlled by protein
phosphorylation. This post-translational modification
(PTM) has been extensively analyzed when examining
one or a few protein phosphorylation events that effect cell
signaling. However, protein kinase-driven signaling net-
works, comprising total (phospho)proteomes, largely con-
trol cell fate. Therefore, large-scale analysis of differentially
regulated protein phosphorylation is central to elucidating
complex cellular events, including maintenance of pluri-
potency and differentiation of embryonic stem cells (ESCs).
The current technology of choice for total phosphopro-
teome and combined total proteome plus total phosphopro-
teome (termed (phospho)proteome) [1] analyses is
multidimensional liquid chromatography- (MDLC) tandem
mass spectrometry (MS/MS). Advances in the use of
MDLC for separation of peptides comprising total (phos-
pho)proteomes, phosphopeptide enrichment, separation of
enriched fractions, and quantitative peptide identification
by MS/MS have been rapid in recent years, as have

improvements in the sensitivity, speed, and accuracy of
mass spectrometers. Increasingly deep coverage of (phos-
pho)proteomes is allowing an improved understanding of
changes in protein phosphorylation networks as cells
respond to stimuli and progress from one undifferentiated
or differentiated state to another. Although MDLC-MS/MS
studies are powerful, understanding the interpretation of the
data is important, and targeted experimental pursuit of
biological predictions provided by total (phospho)proteome
analyses is needed. (Phospho)proteomic analyses of plurip-
otent stem cells are in their infancy at this time. However,
such studies have already begun to contribute to an
improved and accelerated understanding of basic pluripo-
tent stem cell signaling and fate control, especially at the
systems-biology level.

Keywords Embryonic stem cells . Pluripotency .

Differentiation . Proteomics . Phosphoproteomics . Mass
spectrometry .Multidimensional liquid chromatography .

Bioinformatics

Introduction

Pluripotent stem cells, including human embryonic stem
cells (hESCs) and human induced-pluripotent stem cells
(hiPSCs) have the potential to self-renew indefinitely and
differentiate into >200 cell types in the body [2, 3].
Knowledge of the molecular mechanisms of self-renewal,
pluripotency and differentiation has consistently expanded
with the increasing depth of stem cell biology research.
Briefly, self-renewal of human pluripotent stem cells relies
on a relatively well-characterized network of transcription
factors and epigenetic regulators [4–8]. Less well charac-
terized, especially at the systems-biology/proteomic level,
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are cellular signaling pathways (e.g. TGFβ/Activin/Nodal,
WNT, PI3K, FGF, IGF, EGF, PDGF and JNK) with
potential roles in controlling self-renewal, pluripotency
and differentiation [1, 9–17]. Identification of components
contributing to maintenance of self-renewing hESCs has
provided the means to identify pluripotent stem cells by
immunocytochemistry, including Western blotting and flow
cytometry, to maintain pluripotent stem cells in culture, and
to induce pluripotency via reprogramming of differentiated
cell types with exogenous factors.

Phosphorylation is one of the most common and well-
characterized PTMs. Human cells are thought to have about
480 protein kinases [18], a revision of the initial estimate of
518 [19]. The majority of them are serine/(S) threonine (T)
kinases and about 90 are tyrosine (Y) kinases [18]. As with
(perhaps all) other biological processes, dynamic regulation
of reversible, site-specific protein phosphorylation is critical
to the signaling networks that regulate self-renewal and
differentiation [1, 10, 11, 13, 16]. Extra-cellular signals and
intracellular regulatory events that activate pluripotency
factors, inhibit differentiation pathways, promote growth
and cell division, and inhibit cell death may contribute to
the control of stem cell fate. Though much of this network
was initially described in mouse models, it has become
clear that there are differences in the regulation of
pluripotency in mouse and human ESCs. In human ESCs
(hESCs), TGFβ super-family members, including Activin,
Nodal and BMP, modulate self-renewal through receptor-
mediated phosphorylation of pathway-specific SMAD
proteins. Nodal and Activin activates SMAD2/3 whereas
BMP activates SMAD1/5/8. In turn, NANOG transcription
is activated by SMAD2/3 and inhibited by SMAD1/5/8 [11,
20, 21]. Activation of the canonical WNT pathway likely
regulates self-renewal through de-phosphorylation of β-
catenin, allowing its nuclear localization and assembly with
the TCF/LEF complex to enable transcriptional activation
of target genes [22]. Conversely, the phosphatidylinositol-
3-kinase (PI3K) pathway may inhibit differentiation of
endoderm-derived cell lineages, but mechanisms by which
other signaling pathways participate in self-renewal are
relatively unclear [10, 20].

Reactivation of only a few transcription factor proteins,
including OCT4 (POU5F1), SOX2, KLF4, MYC, NANOG
and/or GLIS1 are sufficient, depending on the cell type, for
reprogramming of differentiated human cells to induced
pluripotent stem cells (iPSCs) [2, 23–25]. A growing body
of evidence links these factors to regulatory signaling
components important to self-renewal. KLF4 is a direct
target of the TGFβ pathway [26], and SOX2 and MYC
may also be targets of TGFβ signaling [27]. Similarly,
MYC is a downstream transcriptional target of canonical
WNT signaling [28]. Identification of downstream targets
of these factors is in the early stages, and the environmental

influences of extra-cellular ligands, cellular growth density,
and oxygen concentration on this transcriptional network is
also not characterized well [29–31]. Given the pivotal role
of core transcription regulators, extensive efforts have been
undertaken to describe the transcriptome of pluripotent
cells. Analyses of mRNA microarray data suggest that
protocols specific to individual laboratories in which the
cells were cultured and analyzed are the most influential
determinants of heterogeneous expression profiles [32].
Although some reports estimate that as few as ca. 50% of
the mRNA transcripts quantitatively correlate with relative
abundance of the encoded protein, 75% of protein-coding
transcripts may be expressed in most human tissues, thus
making it difficult to identify physiologically relevant genes
[33]. These observations and challenges make it clear that
proteins, the final products of the vast majority of the
genes, require direct analysis.

In this review, we discuss current analytical platforms that
have been applied in published (phospho)proteomic analyses
of hESCs and their differentiated derivatives, and include
closely allied technologies. Important experimental parame-
ters, key findings of these pioneering studies, including
biological implications and follow-up experiments, are also
described. Efforts are not made to comprehensively review
both phosphoproteomics and stem cell biology, but to help
create a nexus between the two disparate fields. We strive to
facilitate an improved understanding of the first instances of
successful application of phosphoproteomic technologies to
yield an improved understanding of hESC biology.

High Quality Cellular Material from Which the Proteins
are Derived is Critical to the Success of (phospho)
proteomic Studies

Although unclear at this time, due to the low number of
published studies, multiple biological factors could influ-
ence (phospho)proteomic results from pluripotent stem
cells. ESC lines have varying genotypes, passage number,
and gender, which likely result in variation of growth and
differentiation [34]. Furthermore, a given ESC line may
have been passaged by mechanical or enzymatic techni-
ques, cultured under feeder-free conditions, with mouse or
human feeders, or exposed to varying conditions of oxygen
tension, exogenous factors and media preparations [29, 35].
Perhaps as a result of some of these variables, gene
expression profiles correlated strongly with the laboratory
environment in which the cells were grown [32]. Of the
four studies published to date reporting large-scale phos-
phoproteomic profiling of hESCs, two used WA-01 (H1)
hESCs [10, 36], a the third examined HUES-7 [1] while the
fourth used HUES-9 and Odense-3 [13]. Between WA-01
and HUES-7 [1, 10], there was 26% overlap in the
phosphoproteins identified as being more prominent in
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undifferentiated hESCs, whereas the overlap in the differ-
entiated derivatives, under divergent differentiation con-
ditions and times, was 6.9% [37]. Between a recent pair of
(phospho)proteomic analyses of hESCs and their non-
specifically differentiated derivatives, there was a relatively
high overlap of ca. 76% of all identified proteins [1, 13].
Although current observations suggest good reproducibility
of the hESC (phospho)proteome, more data is needed,
including the use of more cell lines.

Demonstration of the condition/quality of the cells
cultured for proteomics experiments has not been routine
or standardized. Although optimization of stem cell culture
is ongoing and the protocols vary widely [38], high quality
cell cultures with the maximum possible homogeneity are
indispensable for successful (phospho)proteomic results.
Additionally, it is important to examine the morphology (e.
g. nuclear-to-cytoplasmic ratio), markers of pluripotency
and the cell surface, as well as differentiation potential (e.g.
embryoid bodies, teratoma formation) as measures of the
quality of the cell populations used for phosphoproteomic
analyses [10]. Due to the large requirement for resources
and time, total (phospho)proteomic analysis generally
precludes extensive replication of results. Thus, careful
choices must be made for experimental conditions to be
used. Additional characterization of the cells and protein
preparations from them is advisable, including karyotype
analysis, immunostaining, flow cytometry, and directed
biochemical assays (e.g. Western blots), for the presence, at
expected quantitative levels, including phosphorylation of
known phosphoproteins. Maximizing homogeneity of the
cell population is important, because small populations of
differentiated cells could contribute “noise” to (phospho)
proteomic profiles. When comparative analyses between
pluripotent and differentiated cell populations are per-
formed, the highest possible differentiation specificity
should help clarify (phospho)proteomic changes during
transitions from pluripotency to specific lineages, and
should allow more rapid discovery of (phospho)proteins
helping to uncover mechanisms of differentiation.

Delineating dynamic molecular profiles that occur
during cell fate choice is a major impetus for application
of (phospho)proteomics, to examine effects of differentia-
tion on the cellular (phospho)proteome [1, 10, 13]. Recent
studies have utilized retinoic acid [10], modulation of BMP
signaling [1], and use of un-conditioned medium or phorbol
12-myristate 13-acetate [13], which resulted in non-specific
differentiation and hence, heterogeneous cell types.

(Phospho)proteomic Analysis Facilitates
an Improved Understanding of Cell Signaling

Proteomics provides a snapshot of the detectable proteins
present in cells at a given time point. Despite, or perhaps

because of the increased complexity resulting from regula-
tion at the transcriptional, translational, post-translational,
and protein stability levels, proteomic signatures may be
relatively stable in spite of changes in DNA copy number
and cellular aging [39, 40]. Understanding pluripotency and
germ line-specific differentiation has benefited from iden-
tification of proteins and other markers specific to particular
lineages. However, many such markers identified show
multiple cell type associations. Tissue specific proteins
could be low abundance or localized to the cell surface,
rendering them difficult to detect [41].

There is increasing evidence that proteins and their
activity may be regulated extensively by changes in protein
abundance and especially phosphorylation [1, 13, 42], and
that extensive regulation of protein phosphorylation occurs
during hESC differentiation [1, 10, 13]. Current data is
consistent with an initial model in which phosphorylation is
an important regulator of cell state, through interaction with
protein activity and stability, as well as influencing
transcription and translation, similar to regulation of these
processes by protein phosphorylation in many biological
systems (Fig. 1). In addition, phosphorylation can inhibit or
facilitate additional PTMs including SUMOylation, acety-
lation, methylation and ubiquitination in adjacent portions
of the protein [43–45].

Analogous to identification of interacting transcrip-
tion factors by interrogating a gene expression dataset,
(phospho)proteomic analysis can identify the regulation
of signaling networks [1, 10, 13, 36], via the phosphor-
ylation state of the kinases and kinase/phosphatase targets
within a given network. One challenge is the difficulty of
detecting low-abundance proteins, which frequently
includes kinases [46]. However, the size of datasets from
identified (phospho)proteomes has increased rapidly,
likely representing improving degrees of comprehensive-
ness of the analyses (Fig. 2). Larger (phospho)proteomic
datasets, although more difficult to analyze, should further
improve the value of the analyses for systems biology and

Fig. 1 Preliminary simplified model of the broad categories of
regulatory molecules controlling pluripotency and differentiation of
stem cells, which is consistent with general cell biology
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to support studies focused on smaller numbers of
(phospho)proteins. In several different biological systems,
the percentage of identified proteins that were phosphor-
ylated has been found to be high, with values of 52% in
mouse tissues and organs [42], 66.5% in hESCs and their
non-specifically differentiated derivatives [13] and 70% in
HeLa cells [47].

Multiple kinase pathways may function to maintain
pluripotency and differentiation. However, the regulation
of protein-phosphorylation-based signaling networks is
only beginning to be cataloged in hESCs and their
derivatives. Traditional antibody-based assays of cell
signaling (e.g. Western blotting, immunofluorescence),
although critical for hypothesis-based investigation of
distinct components in pathway function, are likely to be
insufficient for characterization of global cellular signaling
networks. Even targeted kinase or phosphatase deletion
may modulate many components of interactive signaling
networks, most of which would not be identified without
unbiased, large-scale (phospho)proteomics [48]. Similarly,
RNAi-based knockdown of a single phosphatase causes a
comparatively large percentage of significant changes in
protein phosphorylation relative to protein abundance [49].
Given that approximately 2–4% of eukaryotic genes encode
kinases or phosphatases and regulation of protein phos-
phorylation networks is a likely determinant of cell- and
tissue-specific function [42], large-scale (phospho)proteo-
mics is an essential and powerful tool for understanding
pluripotency and differentiation [1, 10, 13].

The Workflow of (phospho)proteomics: An Overview

Interdisciplinary, large-scale (phospho)proteomic analyses
involve cell biology, multidimensional liquid chromatogra-
phy (MDLC), tandem mass spectrometry (MS/MS) and
bioinformatics analysis of the data, components of
which are introduced in Tables 1 and 2. These analyses
typically employ a “bottom-up” workflow, in which the
total (phospho)proteome is digested by a protease, most
commonly trypsin [1, 10, 13, 50–52], in contrast with

“top-down” proteomics, which involve MS and MS/MS
analyses of intact polypeptides or proteins [53–55]. The
application of ever improving peptide separation and
phosphopeptide enrichment techniques has facilitated
improvement of the sensitivity of phosphoproteomic
analyses. Separation of complex total (phospho)proteomes
is required prior to phosphopeptide enrichment [13]. For
analysis of protein phosphorylation, effective phospho-
peptide enrichment is essential. Commonly employed
techniques for phosphopeptide enrichment include IMAC
[10, 50, 52, 56–59], TiO2-based phosphopeptide enrichment
[56, 60–62], and soluble polymer-based phosphopeptide
enrichment [56, 63, 64].

Faster mass spectrometers with improved sensitivity and
mass accuracy have enabled detection of thousands of
phosphoproteins in a single sample. One commonly used
instrument is the LTQ Orbitrap series, which are hybrid
instruments comprised of a linear ion trap for high-
sensitivity and speed, and an Orbitrap mass analyzer for
high mass accuracy and resolution. Complementary use of
these two mass analyzers is briefly described below.
Another successful hybrid mass spectrometer design,
among several, is a quadrupole-time-of-flight (qTOF or
qqTOF) instrument.

The specific procedures of (phospho)proteomic analyses
vary, including lysis buffer composition, phosphopeptide
enrichment methods, peptide fragmentation mode, mass
spectrometer and bioinformatics algorithms. Standardiza-
tion efforts have been proposed, including the suggestion
that the more innovative analytical platforms should be
broadly adopted by others [65]. However, early suggestions
of consistency among hESC (phospho)proteomes, reported
by different groups, is emerging, as described above.

Total (phospho)proteome analyses provide a daunting
amount of data. The data is searched against a protein
database, to identify proteins, on the basis of peptides
derived from the proteins, via the typical bottom-up
workflows. Database searches, and subsequent analyses,
such as combining multiple data files from a single sample,
differential quantification, pathway analyses, and other
tasks requires powerful computational resources that deliver
results which are amenable to understanding the data, the
differences among samples, and gleaning the important
trends and specific results provided by the data. Ongoing
analyses of the data, termed data mining, are important to
increase the value of (phospho)proteomic data.

Protein Sample Preparation is a Critical Factor

Following culture of high quality cells, yielding at least
1 mg of total protein per sample, cells are lysed [10].
Buffers include salts, detergent, protease and phosphatase
inhibitors and compatibility with the MDLC-MS/MS

Fig. 2 Plot of the phosphoproteomic datasets with the largest number
of identified phosphorylation sites as a function of year. The
references from which the numbers were derived: [52, 67, 73, 137, 42]
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methods is important. Protein kinase inhibitors and
protease inhibitors are valuable in preserving the fidelity
of the (phospho)proteome during and after cell lysis. The
importance of phosphatase inhibitors for increased identi-
fication of protein phosphorylation sites was demonstrated
[66]. We have had success with a specific lysis buffer,
protein precipitation from clarified lysates using ammoni-
um sulfate, re-suspension in the presence of phosphatase
inhibitors and 8 M urea, gel filtration chromatography,
digestion with modified trypsin, including standard reduc-
tion and alkylation reactions, desalting and drying the
peptides prior to subsequent separation and phosphopep-
tide enrichment [10]. Other groups have also reported

successful procedures [1, 13, 36]. One lysis buffer
contained 8 M urea (to enhance lysate component
solubility and inhibit many protein-based biochemical
reactions), and the protein phosphatase inhibitors sodium
fluoride (serine/threonine/acid phosphatase inhibitor) and
sodium orthovanadate (tyrosine phosphatase inhibitor) [1],
while another included these ingredients and β-
glycerophosphate (a protein serine/threonine phosphatase
inhibitor) plus protease inhibitor tablets [13]. A fourth
lysis buffer contained 8 M urea, sodium pyrophosphate
(buffering agent and emulsifier), sodium orthovanadate,
complete mini ETDA-free protease inhibitor and com-
bined phosphatase inhibitor [36].

Table 1 Selected concepts and terminology of relevance to (phospho)proteomics (adapted and expanded from [65, 132])

Term Description

Multi-dimensional liquid chromatography (MDLC) Separation scheme for total (phospho)proteome analyses using three or
more dimensions of separation of the complex mixtures of peptides
derived from total (phospho)proteomes. The most common example would
be SCX (dimension 1), IMAC and/or TiO2 (dimension 2), and reversed-phase
(RP; dimension 3).

Strong cation exchange chromatography (SCX) Common mode of separation, typically of complex mixtures of peptides, in
which there can be a partial enrichment of phosphopeptides based on the lower
solution charge state of peptides due to phosphorylation, at a pH of ca. 2.7, which
can result in earlier elution of phosphopeptides than cognate non-phosphopeptides,
to obtain some phosphopeptide enrichment. SCX results in separation of the total
proteome into simpler fractions.

Immobilized metal affinity chromatography (IMAC) Phosphopeptide enrichment method using trivalent metal ions (usually Fe3+ or Ga3+)
bound to a stationary phase to selectively chelate negatively charged phosphate
groups of phosphoproteins, or more commonly, phosphopeptides.

TiO2-based phosphopeptide enrichment Mode of chromatography to selectively enrich phosphopeptides, in which TiO2

particles selectively bind phosphate groups of phosphopeptides through Lewis
acid-base interactions.

Tandem mass spectrometry (MS/MS) Measurement of mass-charge (m/z) ratio and intensity of precursor ions followed by
isolation of individual precursor ions, their fragmentation and scanning the m/z
ratios of the resulting product ions to deduce peptide sequence.

Collision-induced/activated dissociation (CID/CAD) Peptide fragmentation mode based on collision in the presence of a low pressure
of inert gas and resonant excitation. CID and CAD are similar terms for the same
fragmentation (activation) mode.

Electron transfer dissociation (ETD) Peptide fragmentation mode that can be more suitable to preserving PTMs, notably
phosphorylation and glycosylation, than CID. ETD results in fragmentation of
peptides by reactions initiated by the transfer of electrons to the peptides.

Stable isotope labeling by amino acids in cell
culture (SILAC)

Method for relative quantification of protein expression between or among two or three
samples that relies on incorporation of 13C and 15N labeled (“heavy”) Arg and Lys
residues in one or two of the samples, so that peptides with the same sequence, from
the different samples, are distinguishable by their m/z ratios.

False discovery rate (FDR) Predicted rate of false positive identification, calculated by comparing peptide and/or
protein identifications from forward database searches with reversed database searches,
or by statistical models based on the expectation maximization algorithm [90, 91].

Orbitrap Widely used mass analyzer with high mass accuracy and resolution, which measures
the oscillation frequency of ions along the Orbitrap axis, to enable precise
determination of the m/z ratio.

Biological replicate Repeat of the biological aspect of a given experiment, such as use of two separate
cell samples, or independently repeating a cellular treatment.

Technical Replicate Repeat of the proteomics portion of the experiment, thus analyzing the same sample
again with the proteomic workflow.
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Commonly Used Separation and Phosphopeptide
Enrichment Strategies Include SCX, IMAC, TiO2,
and Reversed-Phase

Because a total (phospho)proteome is exceedingly complex,
the range of protein abundance is large, many phosphopro-
teins are low abundance, phosphorylation site occupancy is
often sub-stoichiometric and some phosphopeptides ionize
and fragment inefficiently, chromatographic fractionation of
the (phospho)proteome, including phosphopeptide enrich-
ment, is essential to successful (phospho)proteomic analyses.
Several separation and phosphopeptide enrichment methods
have been developed (Table 1). SCX is a commonly used
mode of separation, primarily to simplify the (phospho)
proteome, and SCX can result in partial enrichment of
phosphopeptides, especially in fractions eluting early in the
gradient [67]; (J. Hou and L. M. Brill, unpublished data).
Hydrophilic interaction chromatography (HILIC) has been
used as a successful alternative to SCX [68, 69]. Following
simplification of the (phospho)proteome by SCX or HILIC,
phosphopeptide enrichment, most commonly by IMAC or
TiO2, is performed. IMAC is thought to selectively enrich
phosphopeptides by chelation of their negatively charged
phosphate group(s) to metal cations (often Fe3+ or Ga3+) [10,
36, 50, 52, 57, 58, 70, 71]. A complement to, and/or
substitute for IMAC, is the use of TiO2 to enrich
phosphopeptides [56, 60–62]. Peptides containing an abun-
dance of negatively charged aspartate and/or glutamate
residues are also enriched by IMAC and TiO2, so this is a
common reason why, in practice, pure populations of
phosphopeptides are not obtained. However, use of methyl-
esterification reactions of these amino acid side chains and
peptide C-termini can improve selectivity of IMAC for

phosphopeptides [50, 52]. Less commonly used phospho-
peptide enrichment uses soluble polymers, variously termed
dendrimers or PolyMAC, depending on the polymer
preparation [56, 63, 64]. Among the reports of large-scale
hESC (phospho)proteomes, SCX and IMAC separation/
enrichment strategies were used in two of the studies [10,
36], whereas TiO2 was used in the two others [1, 13].

Immediately before introduction into the mass spectrome-
ter, reversed-phase (RP) liquid chromatography (LC) is used
to separate the peptide mixtures in the elution fractions (or
flow-through/wash fractions, if the experimental goals include
their analysis) from phosphopeptide enrichments. RP-LC is
coupled directly to electrospray ionization- (ESI) MS/MS.
Nanoflow (flow rates of ca. 10–300 nanoliters/min) RP-LC is
commonly used for high sensitivity ESI-MS/MS studies [1,
10, 13, 36, 47, 50, 52, 57, 59, 71], although we currently use
higher flow RP-LC with robust operation and sensitivity
similar to nanoflow LC [72]. The result of LC-ESI is
introduction of ionized peptides and phosphopeptides into
the mass spectrometer for MS/MS analyses. The peptide ions
are typically positively charged, predominantly with charges
of ca. 2+–6+, with most ions in the lower portion of this
charge state range. Another common ionization technique,
termed matrix assisted, laser desorption ionization (MALDI)
has not been used in published descriptions of total
(phospho)proteome analyses of hESCs.

MS/MS of Peptides and Phosphopeptides
is Used in Large-Scale (Phospho)Proteomic Analyses

The MS/MS methods are typically “data-dependent”,
meaning that a scan of the precursor ions (MS scan) is
performed first, in which the mass to charge ratio (m/z) is

Table 2 Bioinformatics resources useful to (phospho)proteomics

Resource Purpose Reference

NetworKIN (http://networkin.info/search.php) Kinase-substrate and phosphorylation site interactions 111]

GeneGo Metacore Pathway Analysis
(http://www.genego.com/)

Systems biology/pathway analysis [103]

Ingenuity Pathway Analysis (http://www.ingenuity.com) Systems biology/pathway analysis

KEGG (http://www.genome.jp/kegg/) Systems biology [133]

STRING (http://string-db.org/) Systems biology [134]

NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) Kinase-substrate and phosphorylation site interactions [135]

PHOSIDA (http://www.phosida.com) Interactive database of phosphopeptides [108]

Phospho.ELM http://phospho.elm.eu.org Kinase-substrate and phosphorylation site interactions [136]

PhosphoSite (http://www.phosphosite.org) Kinase-substrate and phosphorylation site interactions [109]

MaxQuant Precursor mass correction, peptide identification and quantification
of SILAC data

[105]

Abacus, QSpec Spectral count analysis [100, 106]

Phosphopep Phosphorylation site database, analysis of the sites, data integration [107]

PRIDE http://www.ebi.ac.uk/pride Proteomic database, contains PTMs, support manuscripts, papers [110]

Trans-Proteomic Pipeline (TPP) http://tools.proteomecenter.org/ Software tools for FDR filtering, quantification, others [90, 91]
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measured, followed by isolation of the most abundant
precursors, one at a time, their fragmentation, and re-
scanning the product ions. Product ion scans are termed
MS/MS scans. In some cases, a dominant product ion,
resulting from prominent neutral loss of H3PO4 (phosphoric
acid) from the phosphopeptide precursor ion, is re-isolated,
re-fragmented, and the products re-scanned as an MS/MS/
MS scan, which can result in an improved ability to identify
the phosphopeptide [73]. When a high-resolution, high
mass-accuracy mass analyzer is used, e.g. an Orbitrap on
the “back” of a hybrid linear ion trap/Orbitrap instrument,
precursor ions are typically scanned in the Orbitrap,
whereas MS/MS scans are usually performed in the fast,
highly sensitive linear ion trap in the “front” of the
instrument (which has lower mass accuracy and resolution
than the Orbitrap). An alternative hybrid mass spectrometer
substitutes a Fourier-transform-ion cyclotron resonance
(FT-ICR) mass analyzer for an Orbitrap [73], and this
instrument’s availability preceded that of those with Orbi-
traps. Recently, MS and MS/MS scans were both performed
in the Orbitrap, using a newer generation of Orbitrap
instrument [74].

A “top 20, data-dependent MS/MS” method refers to a
method in which each of the repeating instrument cycles
consists of one MS scan followed by isolation, fragmenta-

tion and MS/MS scans of the 20 most abundant precursor
ions, one precursor ion at a time. In modern mass
spectrometers these cycles are fast, taking only ca. 2–4 s,
which enables thousands of ionized peptides to be analyzed
in single LC-MS/MS runs. Following their MS/MS
analysis, precursor ions are placed on an exclusion list, to
enable analysis of as many precursor ions as possible,
rather than analyzing only the most abundant ions over and
over. This then enables the mass spectrometer to subject
other, lower abundance precursor ions to MS/MS scanning.

Collision-induced dissociation (CID) and electron-
transfer dissociation (ETD) are commonly used methods
of peptide fragmentation in (phospho)proteomic analyses.
Electron capture dissociation (ECD) is believed to have
similar peptide fragmentation mechanisms as ETD, is used
in conjunction with differing mass spectrometers (typically
FT-ICR instruments lacking ion traps) [75] and has not
been used in published studies on hESC (phospho)
proteomics. CID is most frequently employed in phospho-
proteomic analyses, often using an ion trap mass spectrom-
eter, which is used to deduce peptide and phosphopeptide
sequences (Fig. 3a). Activation by CID results primarily in
b- and y-product ions whose m/z is measured in the MS/MS
scans, in order to deduce the peptide sequence using the
product ions. Several search algorithms are available to

Fig. 3 Examples of annotated MS/MS spectra used to identify
phosphopeptides, and evaluation of data quality. MS/MS spectra were
modified from their COMET Spectrum View (by J. Eng © Institute for
Systems Biology (ISB) 2001), and the SEQUEST Xcorr plus dCN
scores [76] are also presented as important indicators of the quality of
the peptide-spectrum match (PSM) (panels A–D). A. High-quality
MS/MS spectrum using activation by CID to identify a phosphopep-
tide containing phosphothreonine (pT) residue 230 from the Serine/
Threonine Protein Kinase PAK1 in pluripotent hESCs. B. Low-quality

MS/MS spectrum, using activation by CID and the proposed
phosphopeptide identification, which was rejected. C. High-quality
MS/MS spectrum, using activation by ETD, to identify a phosphopep-
tide containing phosphoserine (pS) residue 280 from Microtubule-
Associated Protein 4 (MAP4) in pluripotent hESCs. D. The same
spectrum as in panel C, but following processing to remove un-
fragmented precursor and charge-reduced, un-fragmented precursor
ions and to remove neutral loss product ions from un-fragmented
precursor ions
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match the experimental MS/MS spectra to theoretical MS/
MS spectra, which are computed from protein databases,
resulting in a peptide-spectrum match (PSM). A common
search algorithm, used for the examples presented in Fig. 3,
is SEQUEST [76], which we focus on for clarity and
describe briefly. However, a variety of other search
algorithms are available (see below). The Xcorr score from
SEQUEST is a measure of the goodness of fit of the
experimental and theoretical MS/MS spectra, and the dCN
score is a measure of the difference between the best fitting
peptide sequence and the next-best fitting peptide sequence
[76]. Relatively high Xcorr and dCN scores are generally
necessary for high confidence peptide IDs, whereas low
scores typically lead to rejection of the proposed identifi-
cation (Fig. 3b). Each peptide has unique fragmentation
characteristics, and it is difficult to predict how specific
peptides will fragment [77].

Some peptides and phosphopeptides are more effectively
identified using fragmentation by ETD [78] (Fig. 3c–d) than
CID, especially those precursor ions from phosphopeptides
with lower m/z ratios and higher charge states [79]. One
challenge with ETD MS/MS spectra is effectively searching
them against protein databases, largely because search
algorithms have been predominantly developed for searching
CID MS/MS spectra. Recent advances in processing of the
raw data, including the removal of un-fragmented precursor
ions plus charge-reduced precursor ions and neutral loss
products from these precursor ions have led to increased
numbers of high quality IDs made from ETD-MS/MS
spectra [75, 80–82] (Fig. 3d).

Among the first reports of hESC phosphoproteomes,
three [1, 10, 13] exclusively used CID, and one [36] used a
MS/MS method termed “decision tree”, in which CID and
ETD were applied in combination, depending on the m/z
ratio and charge state of the precursor ion to be fragmented
[79]. The instrument control software of some mass
spectrometers includes the decision tree method [79], and
this is our current MS/MS method of choice. However,
there are additional MS/MS methods available, which are
beyond the scope of this review.

Fragmentation of phosphopeptides by CID (Fig. 3a)
sometimes results in prominent neutral loss of H3PO4 from
the precursor, at the expense of peptide backbone fragmen-
tation, resulting in fewer b- and y-ions and thus a decreased
ability to deduce the peptide sequence [46]. Proline is also a
favored site of fragmentation by CID (e.g. Fig. 3a).
Potential phosphorylation site rearrangement by CID was
proposed [83], but others reported that it is negligible [84,
85]. In contrast, ETD tends to result in an absence of
neutral loss of H3PO4 from phosphopeptides, and yields
primarily c- and z product ions [46, 78], although a lesser
quantity of b- and y-ions result from ETD [86]; (Fig. 3d).
Moreover, fragmentation of peptides containing multiple

Arg and Lys residues by ETD tends to be more robust than
by CID [78].

Use of CID and ETD peptide fragmentation was
compared in a (phospho)proteomic analysis of hESCs and
yeast [36, 79]. ETD identified more phosphopeptides in
later SCX fractions, whereas CID identified proportionally
more phosphopeptides in early SCX fractions, in which
many of these peptides had a lower charge [79], similar to
our results (J. Hou and L. M. Brill, unpublished data). ETD
was twice as likely to produce backbone cleavage in the
vicinity of phosphoserine (pS) residues than CID, although
there was no consistent difference in efficiency between the
fragmentation methods at phosphotyrosines (pY) [79]. In
total, CID identified 5773 unique phosphopeptides and
ETD identified 8603 unique phosphopeptides with 2421
identified by both methods [79]. Sequence coverage was
better for ETD than for CID, which is important for
phosphorylation site localization, which was 49.8% for
ETD and 26.9% for CID [36].

Filtering to achieve a low false discovery rate (FDR) are
important to yield reliable MDLC-MS/MS-based (phospho)
proteomic analyses. High mass accuracy, high resolution
MS data improves the sensitivity and accuracy of peptide
and phosphopeptide identifications. “Lock mass” MS/MS
methods can further improve the mass accuracy of Orbitrap
analyzers and can result in more (phospho)protein IDs [87,
88], but we have had more identifications without the use
of lock mass (J. Hou and L. M. Brill, unpublished data).

The FDR can be estimated on the basis of decoy database
searches in conjunction with “forward” database searches
[89], and by the use of statistical tools, including Peptide-
Prophet and ProteinProphet [90, 91] from the trans-
proteomic pipeline (TPP) at the Institute for Systems
Biology. Although there is no generally accepted FDR, and
the FDR used can vary depending on the experimental goals,
we suggest a FDR range of 0.005–0.009 with the large-scale
datasets collected during total (phospho)proteome analyses,
to yield datasets with good (phospho)proteome coverage and
minimal false discoveries. Poor quality, less reliable spectra,
with poor fragment ion coverage and numerous unexplained,
relatively large fragment ions, tend to score low (Fig. 3b),
and are filtered out of datasets by application of strict FDRs.

Although it is tedious, time consuming and requires
expert personnel, manual validation of PSMs of phospho-
peptides can be very important [10, 92]. There are defined
criteria for accuracy of manual validations [92]. In addition,
software to analyze the reliability of phosphopeptide
identifications has been reported [93]. In anecdotal dis-
cussions, there is general agreement that phosphopeptides
are often not accurately scored by database searching and
filtering algorithms. Note that protein phosphorylation IDs
that form the basis for extensive biological follow-up
experiments should be especially carefully validated [92].
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Quantitative (phospho)proteomics Used on hESCs
Include SILAC and Label-Free

One quantitative proteomics method that was reported in
mouse ESCs, but not hESCs, is termed iTRAQ (isobaric
tagging for relative and absolute quantification [94]), and,
although a good technique, will not be described in detail
here, for clarity. Another method, which has been applied to
hESC (phospho)proteomics, is termed stable isotope label-
ing with amino acids in cell culture (SILAC) [95]. SILAC
uses amino acids containing either heavy (labeled) or light
(normal/unlabeled) stable isotopes to compare two or three
samples by MS, providing relative quantification of
peptides and phosphopeptides. One of two or three cell
populations is grown in culture media in which Arg and/or
Lys contain stable, “heavy” isotopes of carbon (13C) and
nitrogen (15N). This causes an increase in the mass of the
“heavy” peptides derived from labeled proteins compared
to the unlabeled peptides from unlabeled proteins. The
labeled and unlabeled peptides are thus distinguishable by
the mass spectrometer. With SILAC, two or three samples
can be analyzed simultaneously, eliminating the need to
compare separate analyses, thus reducing variability. In
“triple SILAC”, one sample is unlabeled, a second sample
is labeled with intermediate mass labels and a third contains
proteins with the heaviest mass labels. However, SILAC
media is expensive, and the complexity of the peptide
mixtures are approximately doubled or tripled. SILAC was
used to compare 13C6,

15N4 Arg and 13C6
15N2 Lys-labeled,

undifferentiated hESCs to unlabeled hESCs that were
treated by adding BMP4 and removing FGF2 for 30, 60 or
240 min [1]. SCX separation, phosphopeptide enrichment
with TiO2 and LC-MS/MS was employed. About 2/3rds of
the identified peptides were quantifiable, and of those, half of
the phosphopeptides showed changes in relative abundance
during treatment. Rapid, temporal dynamics of protein
phosphorylation has also been examined in HeLa cells
[73]. Similarly, three isotopically distinct versions of Lys
and Arg (“triple SILAC”) were used to label hESCs in
another study using SILAC to examine quantitative changes
during two different treatments, each inducing non-specific
differentiation of HUES-9 and Odense-3 hESCs [13]. The
relative abundance of ca. 50% of the phosphopeptides also
changed during 24 h of differentiation [13].

Label-free quantification, frequently using spectral
counts, and which can also include extracted ion chromato-
grams for further quantification, is also a reliable method to
estimate the relative abundance of proteins and protein
phosphorylation events [10, 42, 59, 96–99]. The spectral
count of a protein is the number of times that the protein is
identified by the MS/MS spectra that yield identification of
peptides derived from the protein [96]. A large portion of
the peptides is derived from only one known protein (non-

degenerate peptides). The protein from which degenerate
peptides are derived is ambiguous, but effective methods to
assign the relative number of spectral counts to specific
proteins, for these degenerate peptides, have been reported
recently [98, 100]. In the only direct comparison of SILAC-
and label-free (spectral counting) quantification we are
aware of, the two methods performed similarly [51]. Using
label-free quantification, over 50% of the phosphoproteins
(929 of 1602) contained more phosphorylation site identi-
fications in either undifferentiated hESCs or their RA-
differentiated derivatives [10], a similar percentage (58%)
as the studies using SILAC [1, 13], despite the use of very
different methods to induce differentiation of the cells.
Moreover, prominent groups of phosphoproteins with
extensive changes during differentiation, in each of the
three studies, included transcription regulators, protein
kinase-driven signaling cascades, and the networks of
phosphoproteins identified and quantified were highly
complex. Although not proof of a causative relationship,
these correlations suggest a prominent role for protein
phosphorylation in the regulation of pluripotency and
differentiation. Several pathways, including the VEGF,
JNK, EGF, IGF and PDGF pathways were predicted, and
found, through follow-up experimentation, to be important
in undifferentiated hESCs, on the basis of phosphoproteomic
and pathway analyses [10, 15]. Recent work demonstrating
that PDGF-AA (10 ng/ml) was capable of complementing a
sub-threshold bFGF concentration (4 ng/ml) to stably
maintain undifferentiated hESCs under chemically defined
conditions, as predicted by phosphoproteomics and pathway
analyses [10], was consistent with earlier results, under un-
defined culture conditions, that PDGF together with
sphingosine-1 phosphate facilitated maintenance of undiffer-
entiated hESCs [12]. Thus, phosphoproteomic analyses of
hESCs and their differentiated derivatives support an
accelerated understanding of the biology of cell states.

Bioinformatics Analysis of (phospho)proteomic Datasets

As stem cell (phospho)proteomic applications expand,
robust bioinformatics procedures for data analysis, includ-
ing cross-referencing of genotypic and clinical parameters
with proteomics, will also be necessary [101, 102].
Delineating identified and quantified proteins to families,
disease markers, therapeutic targets and signaling pathways
can cumulatively establish informative trends among data-
sets and highlight critical components otherwise masked by
data overload [103]. No universal data analysis workflows
have been established, and studies typically employ
different bioinformatics algorithms with varying foci.
SEQUEST, Mascot, Spectrum Mill, X!Tandem and
OMSSA are commonly used database search algorithms,
and Inspect [104] and MS-GF [86] may be increasingly
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used. Other tools with relevance to (phospho)proteomics
are available (Table 2). MaxQuant software has been
reported for peptide identification and quantification of
SILAC data [105]. Spectral counting/label-free quantifica-
tion can include the analysis of statistical significance of
spectral counts of proteins between or among samples,
which requires extensive computation [100, 106]. Several
proteomic and phosphoproteomic databases are available,
such as Phosphopep [107], PHOSIDA [108], Phosphosite
[109] and PRIDE [110]. This allows researchers to query
known protein phosphorylation events, among other func-
tionalities. Moreover, TPP contains a suite of useful
bioinformatics tools.

MetaCore Pathway Analysis (GeneGo, Inc.) and Ingenuity
Pathway Analysis (Ingenuity, Inc.) can bring increased
organization and biological meaning to (phospho)proteomic
data. The datasets may be queried for known protein families,
cellular processes, signaling pathways, molecular complexes,
disease-related protein networks and pharmaceutical targets.
Pathway analyses can provide user-friendly graphical inter-
faces. NetworKIN allows bioinformatics prediction of kinases
and their substrates [111], and was used to identify the
potential kinases phosphorylating the proteins identified in
hESCs [1]. Pictorial representations can be constructed
indicating the possible known and inferred connections
between kinases and substrates.

Biological Insights from Unbiased Phosphoproteomic
Studies of hESCs

The results of large-scale (phospho)proteomic analyses are
unbiased [10, 112], meaning that the proteins that are present
and detectable are what is discovered, in contrast with
techniques specifically targeting the detection of a given
(phospho)protein, such as with FACS, immunohistochemis-
try, immunofluorescence, or Western blots. Although specific
peptides and phosphopeptides can be targeted for precise
quantification using an MS method entitled multiple
reaction-monitoring (MRM, also termed selective reaction
monitoring, SRM) [94, 113], MRM-based analyses of
hESCs have not been reported. Examination of proteomics
data for biological insight has both addressed and stimulated
hypotheses in stem cell biology. One unanticipated observa-
tion is a disproportionately large percentage of pY on
proteins with more phosphorylation site identifications in
undifferentiated hESCs, consistent with the observation that
receptor-tyrosine kinase signaling is critical to the cellular
state [10]. Using pY immunoprecipitation followed by MS/
MS, it was proposed that the surprisingly prominent pY in
hESCs could be facilitated by utilization of unique pY target
sequences [114]. In addition, pS and phosphothreonine (pT)
can have similar or differing biological effects as pY [115]
and pS/pT can oppose the action of pY [116]. For instance,

Cortactin, though a Src substrate activated by pY, showed six
detectable pS sites but no detectable pY [117].

A protein implicated in epigenetic regulation of pluri-
potency, DNMT3B, is consistently phosphorylated in
hESCs [1, 10, 13] and its phosphorylation was identified
more often in undifferentiated than differentiated cells [10].
Several phosphorylation sites were also identified on
LIN28, an RNA binding protein conducive to cellular
reprogramming, and some sites changed in relative abun-
dance during differentiation of hESCs [1, 10, 13].

These studies identified numerous phosphorylation sites
on proteins involved in signaling pathways that regulate
self-renewal, such as WNT and TGFβ. For instance, 17
non-redundant sites on proteins known to participate in
TGFβ signaling were identified but not disclosed [36] and
phosphorylation of SMAD 2/3, GSK3 and β-catenin was
identified [1, 10, 13, 36]. In response to addition of BMP4
and removal of bFGF, the abundance of phosphorylated
transcription factors and nucleic acid binding factors
decreased, whereas total phosphopeptides increased [1]. In
response to RA, many proteins showed increased or
decreased phosphorylation during differentiation, though
cumulatively an increase in phosphorylation during differ-
entiation was again observed [10]. It is unclear whether the
effects of exogenous RA or BMP4 are directly downstream
of the ligand or common, non-specific effects of differen-
tiation [1, 10], but a set of phosphorylation sites that are
generally responsive to non-specific differentiation was
proposed [13]. In addition, signaling cascades not previ-
ously known in hESCs, or whose importance was under-
appreciated in pluripotency were also implicated, via
phosphorylation of some of their members, as participating
in maintenance of undifferentiated hESCs. The JNK and
PDGF pathways were important for maintenance of
undifferentiated hESCs, shown in biological follow-up
experiments [10]. Similarly, phosphorylation of the JNK
target JUN increased after BMP4 addition and removal of
bFGF to induce differentiation [1], novel results revealed
by (phospho)proteomic analyses.

Oxygen tension is a critical factor in the biology of stem
cells [118]. For example, mild hypoxia improves the
efficiency of generation of both mouse and human iPSCs
[119]. FRAP1 (mTOR) was phosphorylated in hESCs [10,
13] and this protein activates HIF-1 (Hypoxia-inducible
factor-1, a heterodimer of HIF1A and ARNT (HIF-1β)
[120]. ARNT was also phosphorylated in undifferentiated
hESCs [10]. The HIF pathway is the primary mediator of
hypoxic adaptation [118], and in mouse ESCs, Arnt directly
activates expression of Pou5f1 (Oct3/4) [121], also suggest-
ing that Arnt participates in regulation of undifferentiated
ESCs. These findings suggest a potential role of phospho-
protein networks in facilitating growth and decreased
spontaneous differentiation of hESCs in mild hypoxia [122].
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Repeat Analysis and Experimental Validation of (phospho)
proteomic Data

Although challenging from the perspective of workload and
data analysis, it is important to complete a given workflow
two or more times on each of two or more identically
cultured and/or treated, independent samples. This ap-
proach provides technical replicates of biological replicates.
It is not possible to identify all the same (phospho)proteins
in separate experiments, but substantial overlap is often
obtained, and replicate analyses help to increase the
coverage of the (phospho)proteome. Because proteomics
technologies are rapidly developing it is not clear how
many phosphoproteins will be identified or how many
residues in a proteome are phosphorylated (Fig. 2). It is also
likely that different cell types will have different numbers
of (phospho)proteins.

It is important to validate (phospho)proteomic results
with independent experiments. One common approach is to
select a portion of the proteins for confirmatory studies
examining their presence, phosphorylation and relative
abundance, often by Western blotting [1, 10, 13]. Agonists
or antagonists of key signaling proteins in pathways
implicated by (phospho)proteomics can also be used to test
if cellular responses are as predicted, but this approach was
only reported once as a component of a large-scale hESC
(phospho)proteomic study [10]. However, biological
follow-up experiments have been increasingly pursued in
association with proteomic analyses [9, 14, 15, 123, 124].
Another potential approach is to perform large-scale
epigenetic or genomic studies to enable bioinformatics
comparisons of proteomic datasets to genomic studies,
which was done with mouse ESCs but not hESCs, although
there is often a poor correlation between mRNA and protein
abundance [94, 125]. Similarly, preliminary examinations
of a correlation between relative protein phosphorylation
and mRNA abundance also suggested that it could be
relatively low (ca. 30%; Supplementary Table 8 [10]). In
addition, histone methylation patterns that indicate inactive,
poised or actively transcribed chromatin regions contribute
to the maintenance of pluripotency [126]. Comparison of
histone methylation patterns, and the implied active or
inactive transcriptional state associated with the genes
encoding the proteins identified by (phospho)proteomics,
showed that the vast majority of the methylation patterns
and ability to identify the encoded protein were in
agreement [1].

Limitations of Proteomics Approaches

Each step of the MDLC-MS/MS workflow can cause
variation in the results, which should be minimized with
attention to detail and strict consistency of the procedures

from one sample to the next. If a phosphopeptide is
identified in one sample and not another, it is likely to be
more abundant in the sample in which it was identified, but
failure to identify the phosphopeptide does not necessarily
mean it is absent [10]. Also, highly annotated and reliable
protein databases can contain errors, so peptide/protein
identifications can be missed, and database search algo-
rithms are imperfect, thus also missing some IDs. However,
combined use of different database search algorithms
(mentioned above) is a well-known method to increase
(phospho)proteome coverage. Some phosphorylation sites
are ambiguous, but the confidence in the proposed site
localization can be estimated [13, 127], and when
warranted, manually examined. However, confidently iden-
tified phosphopeptides with ambiguous phosphorylation
sites still limit the possible sites to the sequence of the
peptide and its S, T or Y residues, and suggest the
possibility of targeting the phosphoprotein, from which
they are derived, for follow-up [10].

Low abundance proteins can be difficult to detect, but
improvements in instrumentation and separation protocols
are leading to advances in their analysis. Larger, more
comprehensive total (phospho)proteome datasets could
mitigate the problem of important (phospho)proteins evad-
ing detection. Moreover, improvements in database search-
ing algorithms are leading to rapid advances in confident
peptide identification, and likely to decreased false negative
IDs.

Identification of phosphorylation sites does not directly
indicate the effect on the proteins (structure, stability,
interactions, catalytic activity) or cellular pathways (i.e.
activating or inhibiting). However, it is becoming increas-
ingly clear that (phospho)proteins play an important role in
regulating cellular identities [1, 10, 13, 36]. More detailed
follow-up is subsequently needed, but care is required to
select the most important phosphorylation sites to investi-
gate in detail, such as with site-specific mutants. Site-
specific follow-up was described for SOX2 in HeLa cells
over-expressing SUMO2, and nuclear localization of SOX2
was not affected by these site-specific mutations in HUES-7
cells [1].

Conclusions and Perspectives

Use of MS for study of PTMs provides an unbiased,
systems-level view of molecular states of biological
systems that is unobtainable by smaller-scale approaches
using antibodies. Proteins and phosphoproteins, the final
products of most genes, are also directly analyzed, rather
than analyzing intermediate products, the mRNAs. The
application of MDLC-MS/MS-based (phospho)proteomics
to stem cell biology will likely increase, and requires multi-
disciplinary teams of scientists. Understanding proteomics
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data, and how it was derived, is critical to its interpretation
and evaluation. Similarly, those more focused on proteo-
mics need to understand the stem cell biology and
implications of the data. (Phospho)proteomics studies of
hESCs are some of the first studies to profile post-
translational regulation of proteins during self-renewal and
differentiation, but a large-scale analysis of the hESC
proteome had been reported previously [128]. Proteomic
analyses could be applied to other PTMs in hESCs. For
example, glycopeptide enrichment followed by LC-MS/MS
was used to identify 180 glycoproteins from murine ESCs
and their embryoid body derivatives [129], and 6367 sites
of N-glycosylation were mapped to 2352 proteins from 4
mouse tissues [130].

Deciphering the relationships of the genome, transcrip-
tome and proteome is challenging. A likely obstacle to
understanding proteome/transcriptome relationships has
been insufficient sensitivity of mRNA and protein detection
assays. As the sensitivity of mRNA detection has improved,
it appears that many more genes are actively transcribed in
diverse cell types than previously thought [33, 131]. Similar
trends could be emerging with proteomes as MDLC-MS/
MS technology improves. In addition, the least abundant
proteins may follow a tendency to be the most tissue-
specific [41]. As detection of PTMs becomes more
sensitive, thousands of new phosphorylated residues in
larger datasets have been detected (Fig. 2). The proportion
of a given protein that is phosphorylated at specific residues
also varies widely [65, 132]. Moreover, it is important to
clarify the biological relevance of the protein phosphoryla-
tion sites. Long lists of (phospho)proteins are not the only
intended experimental endpoints. Thoughtful biochemical,
bioinformatics, and biological follow-up experiments are
needed as well.

Phosphoproteomics may be capable of identifying
abnormally regulated proteins and pathways in disease
models, including the use of iPSCs, as it has in cancer and
some other biological model systems. Future bioinformatics
studies could strive to model and predict potential effects of
genetic variation on protein expression, PTMs, pluripo-
tency, multipotency, health and disease. Finally, further
improvements in MDLC-MS/MS and supporting technolo-
gies and application of MRM-MS methods should help to
discriminate between false negatives and true negatives, as
well as to make the technologies increasingly quantitative
and useful as biological analysis and prediction tools.
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